
Threading Review

1



Creating a Thread

public class Counter extends Thread{
private int value;

Counter () {
value = 0;

}

public int getValue () {
return value;

}

public void count () {
value++;

}

public void run () {
count ();

}

public static void main (String[] args){
Counter counter = new Counter ();
new Thread ().start ();
System.out.println (counter.getValue ());

}
}

2

public class Counter implements Runnable{
private int value;

Counter () {
value = 0;

}

public int getValue () {
return value;

}

public void count () {
value++;

}

public void run () {
count ();

}

public static void main (String[] args){
Counter counter = new Counter ();
new Thread (counter).start ();
System.out.println (counter.getValue ());

}
}

public class Counter{
private int value;

Counter () {
value = 0;

}

public int getValue () {
return value;

}

public void count () {
value++;

}

public static void main (String[] args){
new Thread(()->count()).start ();
System.out.println (counter.getValue ());

}
}

Thread Runnable Lambda



Activity: Counter (100)

• Using the previous slide as an example:
– Create a Counter.java file that starts 100 counters and prints out the 

resulting Counter value.
– The run method for each counter should only add one count.

3

DISCUSS RESULTS



Activity: Counter (10000)

• Update counter to:
– Start 10,000 counters and print out the resulting Counter value.
– The run method for each counter should only add one count.

4

DISCUSS RESULTS



Sleep
public class Counter{

private int value;

Counter () {
value = 0;

}

public int getValue () {
return value;

}

public void count () {
value++;

}

public static void main (String[] args) 
throws InterruptedException {
new Thread(()->count()).start ();
Thread.sleep (500) // Sleep for 500 ms
System.out.println (counter.getValue ());

}
}

• Thread.sleep(ms) is used to 
force the current thread to give up 
the CPU for ms number of 
milliseconds

• After the sleep window, the thread
can the be scheduled to run again

─ It will most likely not start 
immediately 



Activity: Sleepy Counter

• Update your code to add a 1 second sleep after starting all the 
threads but before printing the count

• Do you get the correct count now?
• If not, try a larger sleep window

– If you get above 10 seconds you can stop

6

DISCUSS RESULTS



Activity: Counter (1000000)

• Update your counter to create 1 Million threads
• How does this impact the results?

7

DISCUSS RESULTS



Join

• join() causes the 
current thread to give up 
CPU time until the thread it 
is joining completes

public class Counter{
private int value;

Counter () {
value = 0;

}

public int getValue () {
return value;

}

public void count () {
value++;

}

public static void main (String[] args) 
throws InterruptedException {
Thread thread = new Thread(()->count());
thread.start ();
thread.join ();
System.out.println (counter.getValue ());

}
}



Activity: Counter With Join
• Update your example to use join instead of sleep

– You cannot join in the same loop as you are creating the threads 
otherwise you will single-thread your application

9

DISCUSS RESULTS



Activity: Counter (100x100)

• Instead of creating one million threads:
– Update your code to create 100 threads
– Each thread should call count 100 times

10

DISCUSS RESULTS



Activity: Counter (1000x100)

• Update your code to have each thread count 1000 times
– Still create 100 threads

• Did you still get the correct count at the end?

11

DISCUSS RESULTS



Activity: Counter (10000x100)

• Lastly, update the threads run so that it counts to 10,000
– Still start 100 threads

• Is your count still correct at the end?
– If it’s not, why is that the case

12

DISCUSS RESULTS



Discussion

• Why is creating 1000000 single-count threads so much slower 
than creating 100 10000-count threads?

• Why did 100 10K-count threads loose so many values in 
comparison to 1000000 single-count threads?

• How to fix this?


